Abstract

We consider subgroups of the braid groups which are generated by $$n$$ th powers of the standard generators and prove that any infinite intersection (with even $$n$$ ) is trivial. This is motivated by some conjectures of Squier concerning the kernels of Burau’s representations of the braid groups at roots of unity. Furthermore, we show that the image of the braid group on 3 strands by these representations is either a finite group, for a few roots of unity, or a finite extension of a triangle group, by using geometric methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.