Abstract
What does a simple ring with unity, a topological T0-space and a graph that has at most one loop but may possess edges, have in common? In this note we show that they all are Brown–McCoy semisimple. Suliński has generalised the well-known Brown–McCoy radical class of associative rings (cf. [1]) to a category which satisfies certain conditions. In [3] he defines a simple object, a modular class of objects and the Brown–McCoy radical class as the upper radical class determined by a modular class in a category which, among others, has a zero object and kernels. To include categories like that of topological spaces and graphs, we use the concepts of a trivial object and a fibre. We then follow Suliński and define a simple object, a modular class of objects and then the Brown–McCoy radical class as the upper radical class determined by a modular class.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.