Abstract

AbstractWe discuss a continuous-time Markov branching model in which each individual can trigger an alarm according to a Poisson process. The model is stopped when a given number of alarms is triggered or when there are no more individuals present. Our goal is to determine the distribution of the state of the population at this stopping time. In addition, the state distribution at any fixed time is also obtained. The model is then modified to take into account the possible influence of death cases. All distributions are derived using probability-generating functions, and the approach followed is based on the construction of families of martingales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.