Abstract

The present paper is a natural continuation of our last articles on the Riemann, Hilbert, Dirichlet, Poincaré, and, in particular, Neumann boundary-value problems for quasiconformal, analytic, harmonic functions and the so-called A-harmonic functions with arbitrary boundary data that are measurable with respect to the logarithmic capacity. Here, we extend the corresponding results to generalized analytic functions h : D→C with sources g : ∂z-h = g ∈ Lp , p > 2, and to generalized harmonic functions U with sources G : ΔU =G ∈Lp , p > 2. Our approach is based on the geometric (functional-theoretic) interpretation of boundary values in comparison with the classical operator approach in PDE. Here, we will establish the corresponding existence theorems for the Poincaré problem on directional derivatives and, in particular, for the Neumann problem to the Poisson equations ΔU =G with arbitrary boundary data that are measurable with respect to the logarithmic capacity. A few mixed boundary-value problems are considered as well. These results can be also applied to semilinear equations of mathematical physics in anisotropic and inhomogeneous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.