Abstract

We discuss a control constrained boundary optimal control problem for the Boussinesq-type system arising in the study of the dynamics of an arterial network. We suppose that a control object is described by an initial-boundary value problem for 1D system of pseudo-parabolic nonlinear equations with an unbounded coefficient in the principal part and Robin boundary conditions. The main question we discuss in this part of paper is about topological and algebraical properties of the set of feasible solutions. Following Faedo–Galerkin method, we establish the existence of weak solutions to the corresponding initial-boundary value problem and show that these solutions possess some special extra regularity properties which play a crucial role in the proof of solvability of the original optimal control problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.