Abstract

Abstract The onset of boundary layer separation (BLS) forced by gravity waves in the lee of mesoscale topography is investigated based on a series of numerical simulations and analytical formulations. It is demonstrated that BLS forced by trapped waves is governed by a normalized ratio of the vertical velocity maximum to the surface wind speed; other factors such as the mountain height, mountain slope, or the leeside speedup factor are less relevant. The onset of BLS is sensitive to the surface sensible heat flux—a positive heat flux tends to increase the surface wind speed through enhancing the vertical momentum mixing and accordingly inhibits the occurrence of BLS, and a negative heat flux does the opposite. The wave forcing required to cause BLS decreases with an increase of the aerodynamical roughness zo; a larger zo generates larger surface stress and weaker surface winds and therefore promotes BLS. In addition, BLS shows some sensitivity to the terrain geometry, which modulates the wave characteristics. For a wider ridge, a higher mountain is required to generate trapped waves with a wave amplitude comparable to that generated by a lower but narrower ridge. The stronger hydrostatic waves associated with the wider and higher ridge play only a minor role in the onset of BLS. It has been demonstrated that although hydrostatic waves generally do not directly induce BLS, undular bores may form associated with wave breaking in the lower troposphere, which in turn induce BLS. In addition, BLS could occur underneath undular jump heads or associate with trapped waves downstream of a jump head in the presence of a low-level inversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.