7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1007/s13324-020-00406-y
Copy DOIJournal: Analysis and Mathematical Physics | Publication Date: Nov 1, 2020 |
Citations: 10 |
We introduce a family of boundary confinements for Coulomb gas ensembles, and study them in the two-dimensional determinantal case of random normal matrices. The family interpolates between the free boundary and hard edge cases, which have been well studied in various random matrix theories. The confinement can also be relaxed beyond the free boundary to produce ensembles with more fuzzy boundaries, i.e., where the particles are more and more likely to be found outside of the boundary. The resulting ensembles are investigated with respect to scaling limits and distribution of the maximum modulus. In particular, we prove existence of a new point field - a limit of scaling limits to the ultraweak point when the droplet ceases to be well defined.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.