Abstract
Previous research on steel bar-concrete bond behaviour has been concentrated mostly on the intact concrete without considering initial cracks induced by transverse tensile loading called pre-cracking phenomenon. There is no accurate model for evaluating bond behaviour and development length of steel bar in pre-cracked concrete. This paper aims to characterise the bond-slip behaviour of steel bars in pre-cracked concrete by direct pull-out tests, and proposes a constitutive law as a function of the crack width. Results show that induced cracks, notably cracks wider than 0.15 mm, cause a significant reduction in maximum and residual bond strength. Also, results indicate that larger crack widths result in considerably lower dissipated energy by the bond mechanism. The results obtained from both the experimental tests and referenced database demonstrate that the pre-cracking phenomenon has a higher impact on the residual bond strength compared to the maximum bond strength. Unlike existing equations, the proposed model accurately considers cracking effects on the steel bar-concrete bond properties and shows a satisfactory fit with the experimental database. A predictive equation is also proposed for calculation of the development length in pre-cracked concrete, which is more conservative and prudent compared to existing regulations in design codes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.