Abstract

Bohr's complementarity interpretation is represented as the relativization of the quantum mechanical description of a system to the maximal Boolean subalgebra (in the non-Boolean logical structure of the system) selected by a classically described experimental arrangement. Only propositions in this subalgebra have determinate truth values. The concept of a minimal revision of a Boolean subalgebra by a measurement is defined, and it is shown that the nonmaximal measurement of spin on one subsystem in the spin version of the Einstein—Podolsky—Rosen experiment actually selects an appropriate maximal Boolean subalgebra ℛ′ in the logical structure of the composite system, via a minimal revision of the maximal Boolean subalgebra & associated with the preparation of the singlet spin state. This provides an explanation for the determinate truth values of propositions in ℛ′ referring to the second subsystem within the framework of the complementarity interpretation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call