Abstract

The on-body propagation at 60 GHz is studied analytically, numerically and experimentally using a skin-equivalent phantom. First, to provide analytical-based fundamental models of path gain, the theory of propagating waves near a flat phantom is studied by considering vertical and horizontal elementary dipoles. The analytical models are in excellent agreement with full-wave simulations. For a vertically polarized wave, a minimum power decay exponent of 3.5 is found. Then, propagation on the body is investigated experimentally in vertical and horizontal polarizations using two linearly-polarized open-ended waveguides. The analytical models fit very well with the measurements. Furthermore, the effect of polarization on the antenna performance is studied numerically and experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.