Abstract

This paper focuses on real-world implementation and verification of a local, model-based stochastic automatic collision avoidance algorithm, with application in remotely-piloted (tele-operated) unmanned aerial vehicles (UAVs). Automatic collision detection and avoidance for tele-operated UAVs can reduce the workload of pilots to allow them to focus on the task at hand, such as searching for victims in a search and rescue scenario following a natural disaster. The proposed algorithm takes the pilot's input and exploits the robot's dynamics to predict the robot's trajectory for determining whether a collision will occur. Using on-board sensors for obstacle detection, if a collision is imminent, the algorithm modifies the pilot's input to avoid the collision while attempting to maintain the pilot's intent. The algorithm is implemented using a low-cost on-board computer, flight-control system, and a two-dimensional laser illuminated detection and ranging sensor for obstacle detection along the trajectory of the robot. The sensor data is processed using a split-and-merge segmentation algorithm and an approximate Minkowski difference. Results from flight tests demonstrate the algorithm's capabilities for tele-operated collision-free control of an experimental UAV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call