Abstract

We study asynchronous SSMA communication systems using binary spreading sequences of Markov chains and prove the CLT (central limit theorem) for the empirical distribution of the normalized MAI (multiple-access interference). We also prove that the distribution of the normalized MAI for asynchronous systems can never be Gaussian if chains are irreducible and aperiodic. Based on these results, we propose novel theoretical evaluations of bit error probabilities in such systems based on the CLT and compare these and conventional theoretical estimations based on the SGA (standard Gaussian approximation) with experimental results. Consequently we confirm that the proposed theoretical evaluations based on the CLT agree with the experimental results better than the theoretical evaluations based on the SGA. Accordingly, using the theoretical evaluations based on the CLT, we give the optimum spreading sequences of Markov chains in terms of bit error probabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.