Abstract

We present a reduction theory for certain binary quadratic forms with coefficients in ℤ[λ], where λ is the minimal translation in a Hecke group. We generalize from the modular group Γ(1) = PSL(2,ℤ) to the Hecke groups and make extensive use of modified negative continued fractions. We also define and characterize "reduced" and "simple" hyperbolic fixed points of the Hecke groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.