Abstract

We show the continuity of the topological entropy for the Milnor–Thurston world of interval maps and we compute the minimum and the maximum values for the entropy of a maximal sequence of any given period. We also study (fractal) geometric properties of the bifurcation set in the parameter space and in the associated phase spaces Σ[a, b], and we compare these results with the previously known results about the lexicographic world of interval maps (related to Lorenz-like maps).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.