Let Z(t)= exp left( sqrt{ 2} B_H(t)- left|t right|^{2H}right) , tin mathbb {R} with B_H(t),tin mathbb {R} a standard fractional Brownian motion (fBm) with Hurst parameter H in (0,1] and define for x non-negative the Berman function BZ(x)=EI{ϵ0(RZ)>x}ϵ0(RZ)∈(0,∞),\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\mathcal {B}_{Z}(x)= \\mathbb {E} \\left\\{ \\frac{ \\mathbb {I} \\{ \\epsilon _0(RZ) > x\\}}{ \\epsilon _0(RZ)}\\right\\} \\in (0,\\infty ), \\end{aligned}$$\\end{document}where the random variable R independent of Z has survival function 1/x,xgeqslant 1 and ϵ0(RZ)=∫RIRZ(t)>1dt.\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\epsilon _0(RZ) = \\int _{\\mathbb {R}} \\mathbb {I}{\\left\\{ RZ(t)> 1\\right\\} }{dt} . \\end{aligned}$$\\end{document}In this paper we consider a general random field (rf) Z that is a spectral rf of some stationary max-stable rf X and derive the properties of the corresponding Berman functions. In particular, we show that Berman functions can be approximated by the corresponding discrete ones and derive interesting representations of those functions which are of interest for Monte Carlo simulations presented in this article.

Full Text

Published Version
Open DOI Link

Get access to 250M+ research papers

Discover from 40M+ Open access, 3M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call