Abstract
This paper presents detailed finite element formulations on the kinematic hardening rule of plasticity included in an existing thermoelastoplastic stress analysis code primarily designed to predict the thermomechanical behaviour of nuclear reactor fuel elements. The kinematic hardening rule is considered to be important for structures subject to repeated (or cyclic) loads. The start-up/operation/shut-down and various power excursions in a reactor all can be classified as cyclic loadings. In addition to the shifting of material yield surfaces as usually handled by the kinematic hardening rule, the thermal effect and temperature-dependent material properties have also been included in the present work for the first time. A case study related to an in-reactor experiment on a single fuel element indicated that significantly higher cumulative sheath residual strains after two load cycles was obtained by the present scheme than those calculated by the usual isotropic hardening rule. This observation may alert fuel modellers to select proper hardening rules in their analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.