Abstract
An analytical solution is obtained for the Functionally Graded Shape Memory Alloy (FG-SMA) composites subjected to thermo-mechanical coupling. Young's modulus and thermal expansion coefficient of the material are assumed to vary in different forms of power function through the thickness, with the Poisson's ratio being constant. An SMA constitutive model is combined with the averaging techniques of composite to determine the mechanical properties of the FG-SMA composites. Different phase transformation steps and the corresponding stress distributions through the thickness direction are given. The results show that the average stresses decrease as the transformations proceed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.