Abstract

The high-sensitive and rapid detection of critical biomarkers, e.g., disease-related nucleic acids and proteins, is always desired. Compared with the routine homogenous detection strategies, the on-bead flow cytometry (FCM)-based assays have drawn a lot of interests owing to their unique advantages. On one hand, microbeads (MBs) are employed for the enrichment of fluorescent signals, allowing the size encoding for multiplexed detection of biomarkers. On the other hand, FCM enables the fast read-out of the total fluorescent signals enriched on the MBs and the decoding of MBs' size information. For an improved sensitivity and versatile application scenarios, the signal amplification on MBs is required. However, the enzyme-catalyzed on-bead reactions remain challenging owing to the critical reaction conditions on the MBs/solution interface. Toward the high-sensitive detection of target biomolecules in real-samples, a series of on-bead enzyme-catalyzed signal amplification strategies have been developed. After careful optimization of the reaction conditions, the proposed sensors are proven to have ultra-high sensitivities to fulfill the requirement of real-sample detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.