Abstract

The paper introduces the concept of a regulated function of several variables $f\colon X\to\mathbb R$, where $X\subseteq \mathbb R^n$. The definition is based on the concept of a special partition of the set $X$ and the concept of oscillation of the function $f$ on the elements of the partition. It is shown that every function defined and continuous on the closure $X$ of the open bounded set $X_0\subseteq\mathbb R^n$, is regulated (belongs to the space $\langle{\rm G(}X),\|\cdot\ |\rangle$). The completeness of the space ${\rm G}(X)$ in the $\sup$-norm $\|\cdot\|$ is proved. This is the closure of the space of step functions. In the second part of the work, the space ${\rm G}^J(X)$ is defined and studied, which differs from the space ${\rm G}(X)$ in that its definition uses $J$-partitions instead of partitions, whose elements are Jordan measurable open sets. The properties of the space ${\rm G}(X)$ listed above carry over to the space ${\rm G}^J(X)$. In the final part of the paper, the notion of $J$-integrability of functions of several variables is defined. It is proved that if $X$ is a Jordan measurable closure of an open bounded set $X_0\subseteq\mathbb R^n$, and the function $f\colon X\to\mathbb R$ is Riemann integrable, then it is $J$-integrable. In this case, the values of the integrals coincide. All functions $f\in{\rm G}^J(X)$ are $J$-integrable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call