Abstract

Let (L, [p]) be a finite dimensional restricted Lie algebra over an algebraically closed field F of characteristic p ≥ 3, X ∈ L* a linear form. In this article we study the Auslander-Reiten quivers of certain blocks of the reduced enveloping algebra u(L,x). In particular, it is shown that the enveloping algebras of supersolvable Lie algebras do not possess AR-components of Euclidean type.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.