Abstract

Many statistical models have likelihoods which are intractable: it is impossible or too expensive to compute the likelihood exactly. In such settings, a common approach is to replace the likelihood with an approximation, and proceed with inference as if the approximate likelihood were the true likelihood. In this paper, we describe conditions which guarantee that this naive inference with an approximate likelihood has the same first-order asymptotic properties as that with the true likelihood. We investigate the implications of these results using a Laplace approximation to the likelihood in a simple two-level latent variable model and using reduced-dependence approximations to the likelihood in an Ising model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.