Abstract

Model selection criteria are often assessed by the so-called asymptotic risk. Asymptotic risk is defined either with the mean-squared error of estimated parameters; or with the mean-squared error of prediction. The literature focuses on i.i.d. or stationary time-series data though. Using the latter definition of asymptotic risk, this paper assesses the conventional AIC-type and BIC-type information criteria, which are arguably most suitable for univariate time series in which the lags are naturally ordered. Throughout we consider a univariate AR process in which the AR order and the order of integratedness are finite but unknown. We prove the BIC-type information criterion, whose penalty goes to infinity, attains zero asymptotic excess risk. In contrast, the AIC-type information criterion, whose penalty goes to a finite number, renders a strictly positive asymptotic excess risk. Further, the asymptotic excess risk increases with the admissible number of lags. The last result gives a warning on possible over-fitting of certain high-dimensional analyses, should the underlying data generating process be strongly sparse, that is, the true dimension be finite. In sum, we extend the existing asymptotic risk results in threefold: (i) a general I(d) process; (ii) same-realization prediction; and (iii) an information criterion more general than AIC. A simulation study and a small-scale empirical application compare the excess risk of AIC with those of AIC3, HQIC, BIC, Lasso as well as adaptive Lasso.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.