Abstract
A set of geometric graphs is geometric-packable if it can be asymptotically packed into every sequence of drawings of the complete graph K n . For example, the set of geometric triangles is geometric-packable due to the existence of Steiner Triple Systems. When G is the 4-cycle (or 4-cycle with a chord), we show that the set of plane drawings of G is geometric-packable. In contrast, the analogous statement is false when G is nearly any other planar Hamiltonian graph (with at most 3 possible exceptions). A convex geometric graph is convex-packable if it can be asymptotically packed into the convex drawings of the complete graphs. For each planar Hamiltonian graph G , we determine whether or not a plane G is convex-packable. Many of our proofs explicitly construct these packings; in these cases, the packings exhibit a symmetry that mirrors the vertex transitivity of K n .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.