Abstract

Nonparametric density and regression estimators commonly depend on a bandwidth. The asymptotic properties of these estimators have been widely studied when bandwidths are non stochastic. In practice, however, in order to improve finite sample performance of these estimators, bandwidths are selected by data driven methods, such as cross-validation or plug-in procedures. As a result, nonparametric estimators are usually constructed using stochastic bandwidths. In this article, we establish the asymptotic equivalence in probability of local polynomial regression estimators under stochastic and nonstochastic bandwidths. Our result extends previous work by Boente and Fraiman (1995) and Ziegler (2004).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.