Abstract
A bivariate competing risks problem is considered for a rather general class of survival models. The lifetime distribution of each component is indexed by a frailty parameter. Under the assumption of conditional independence of components the correlated frailty model is considered. The explicit asymptotic formula for the mixture failure rate of a system is derived. It is proved that asymptotically, as t → ∞ , the remaining lifetimes of components tend to be independent in the defined sense. Some simple examples are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.