Abstract

ABSTRACT Increased adoption of additively manufactured superalloys has led to the consideration of revised heat treatment approaches for these materials. The rapid cooling during additive manufacturing processes has been seen to suppress gamma prime (γ′) precipitation, which has raised the possibilities for omitting the high-temperature solution treatment step that usually precedes ageing heat treatment for these alloys. In this work, the as-built microstructure of a high gamma prime fraction superalloy Inconel 939 is presented, where the absence of any γ′ precipitation is notable. However, transmission electron microscopy shows the presence of nano-sized Eta (η) phase. It is shown that the omission of solution treatment leads to the growth of the deleterious η phase upon ageing, which results in embrittlement in tensile loading. It is concluded that at least for this particular alloy the solution treatment plays a critical role in the establishment of the required microstructure and hence cannot be omitted from the heat treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.