Abstract
In a recent paper of Alahmadi, Alkan and López-Permouth, a ring R is defined to have no (simple) middle class if the injectivity domain of any (simple) R-module is the smallest or largest possible. Er, López-Permouth and Sökmez use this idea of restricting the class of injectivity domains to classify rings, and give a partial characterization of rings with no middle class. In this work, we continue the study of the property of having no (simple) middle class. We give a structural description of right Artinian right nonsingular rings with no right middle class. We also give a characterization of right Artinian rings that are not SI to have no middle class, which gives rise to a full characterization of rings with no middle class. Furthermore, we show that commutative rings with no middle class are those Artinian rings which decompose into a sum of a semisimple ring and a ring of composition length two. Also, Artinian rings with no simple middle class are characterized. We demonstrate our results with several examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.