Abstract

A well-known conjecture of E. Artin [1] states that for any integers $a \ne {\pm}1$ and $a$ is not a perfect square, there are infinitely many prime integers $p$ for which $a$ is a primitive root $({\bmod}\, p)$ . An analogue of this conjecture for function fields was attacked successfully by Bilharz [2] in 1937 using the Riemann hypothesis for curves over finite fields (subsequently proved by A. Weil). The original conjecture of Artin remains open, though it was shown to be true if one assumes the Generalized Riemann hypothesis by Hooley [7]. In recent years, this conjecture of Artin has also been formulated and studied for elliptic curves over global fields instead of just ${\rm G}_m$ (the original case) (see [11]).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.