Abstract

This paper has two parts. In the first part we construct arithmetic models of Bost-Connes systems for arbitrary number fields, which has been an open problem since the seminal work of Bost and Connes (Sel. Math. 1(3):411–457, 1995). In particular our construction shows how the class field theory of an arbitrary number field can be realized through the dynamics of a certain operator algebra. This is achieved by working in the framework of Endomotives, introduced by Connes, Consani and Marcolli (Adv. Math. 214(2):761–831, 2007), and using a classification result of Borger and de Smit (arXiv:1105.4662) for certain Λ-rings in terms of the Deligne-Ribet monoid. Moreover the uniqueness of the arithmetic model is shown by Sergey Neshveyev in an appendix. In the second part of the paper we introduce a base-change functor for a class of algebraic endomotives and construct in this way an algebraic refinement of a functor from the category of number fields to the category of Bost-Connes systems, constructed recently by Laca, Neshveyev and Trifkovic (arXiv:1010.4766).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.