Abstract

An arc is a set of points of the \((k-1)\)-dimensional projective space over the finite field with q elements \({\mathbb F}_q\), in which every k-subset spans the space. In this article, we firstly review Glynn’s construction of large arcs which are contained in the intersection of quadrics. Then, for q odd, we construct a series of matrices \(\mathrm {F}_n\), where n is a non-negative integer and \(n \leqslant |G|-k-1\), which depend on a small arc G. We prove that if G can be extended to a large arc S of size \(q+2k-|G|+n-2\) then, for each vector v of weight three in the column space of \(\mathrm {F}_n\), there is a quadric \(\psi _v\) containing \(S \setminus G\). This theorem is then used to deduce conditions for the existence of quadrics containing all the vectors of S.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.