Abstract

We study the limiting behavior of a random dynamic system driven by a stochastic chain. Our interest is in the chains that are not necessarily ergodic but are decomposable into ergodic classes. To investigate the conditions under which the ergodic classes of a model can be identified, we introduce and study an <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\ell_{1}$</tex> </formula> -approximation and infinite flow graph of the model. We show that the <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\ell_{1}$</tex></formula> -approximations of random chains preserve certain limiting behavior. Using the <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">$\ell_{1}$</tex></formula> -approximations, we show how the connectivity of the infinite flow graph is related to the structure of the ergodic groups of the model. Our main result of this paper provides conditions under which the ergodicity groups of the model can be identified by considering the connected components in the infinite flow graph. We provide two applications of our main result to random networks, namely broadcast over time-varying networks and networks with random link failure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.