Abstract
This work studies solution methods for approximating a given tensor by a sum of R rank-1 tensors with one or more of the latent factors being orthonormal. Such a problem arises from applications such as image processing, joint singular value decomposition, and independent component analysis. Most existing algorithms are of the iterative type, while algorithms of the approximation type are limited. By exploring the multilinearity and orthogonality of the problem, we introduce an approximation algorithm in this work. Depending on the computation of several key subproblems, the proposed approximation algorithm can be either deterministic or randomized. The approximation lower bound is established, both in the deterministic and the expected senses. The approximation ratio depends on the size of the tensor, the number of rank-1 terms, and is independent of the problem data. When reduced to the rank-1 approximation case, the approximation bound coincides with those in the literature. Moreover, the presented results fill a gap left in Yang (SIAM J Matrix Anal Appl 41:1797–1825, 2020), where the approximation bound of that approximation algorithm was established when there is only one orthonormal factor. Numerical studies show the usefulness of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.