Abstract

We show how to use a simple perturbation method to solve non-linear rational expectation models. Drawing from the applied mathematics literature we propose a method consisting of series expansions of the non-linear system around a known solution. The variables are represented in terms of their orders of approximation with respect to a perturbation parameter. The final solution, therefore, is the sum of the different orders. This approach links to formal arguments the idea that each order of approximation is solved recursively taking as given the lower order of approximation. Therefore, this method is not subject to the ambiguity concerning the order of the variables in the resulting state-space representation as, for example, has been discussed by Kim et al. (2008). Provided that the model is locally stable, the approximation technique discussed in this paper delivers stable solutions at any order of approximation. JEL Classification: C63, E0

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.