Abstract

Bivariate extreme value distributions can be used to model dependence of observations from random variables in extreme levels. There is no finite dimensional parametric family for these distributions, but they can be characterized by a certain one-dimensional function which is known as Pickands dependence function. In many applications the general approach is to estimate the dependence function with a non-parametric method and then conduct further analysis based on the estimate. Although this approach is flexible in the sense that it does not impose any special structure on the dependence function, its main drawback is that the estimate is not available in a closed form. This paper provides some theoretical results which can be used to find a closed form approximation for an exact or an estimate of a twice differentiable dependence function and its derivatives. We demonstrate the methodology by calculating approximations for symmetric and asymmetric logistic dependence functions and their second derivatives. We show that the theory can be even applied to approximating a non-parametric estimate of dependence function using a convex optimization algorithm. Other discussed applications include a procedure for testing whether an estimate of dependence function can be assumed to be symmetric and estimation of the concordance measures of a bivariate extreme value distribution. Finally, an Australian annual maximum temperature dataset is used to illustrate how the theory can be used to build semi-infinite and compact predictions regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.