Abstract

Triangular decompositions for systems of polynomial equations with n variables, with exact coefficients, are well developed theoretically and in terms of implemented algorithms in computer algebra systems. However there is much less research concerning triangular decompositions for systems with approximate coefficients. In this paper we discuss the zero-dimensional case of systems having finitely many roots. Our methods depend on having approximations for all the roots, and these are provided by the homotopy continuation methods of Sommese, Verschelde and Wampler. We introduce approximate equiprojectable decompositions for such systems, which represent a generalization of the recently developed analogous concept for exact systems. We demonstrate experimentally the favorable computational features of this new approach, and give a statistical analysis of its error.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.