Abstract
In this paper, we consider a non-self-adjoint, singular, nonlinear fourth order boundary value problem which arises in the theory of epitaxial growth. It is possible to reduce the fourth order equation to a singular boundary value problem of second order given by w''-1/r w'=w^2/(2r^2 )+1/2 λ r^2. The problem depends on the parameter λ and admits multiple solutions. Therefore, it is difficult to pick multiple solutions together by any discrete method like finite difference method, finite element method etc. Here, we propose a new technique based on homotopy perturbation method and variational iteration method. We compare numerically the approximate solutions computed by Adomian decomposition method. We study the convergence analysis of both iterative schemes in C^2 ([0,1]). For small values of λ, solutions exist whereas for large values of λ solutions do not exist.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.