Abstract
Linearly implicit methods for Ordinary Differential Equations combined with the application of Approximate Matrix Factorization (AMF) provide efficient numerical methods for the solution of large semi-discrete parabolic Partial Differential Equations in several spatial dimensions. Interesting particular subclasses of such linearly implicit methods are the so-called W-methods and the TASE W-methods recently introduced in González-Pinto et al. (Appl Numer Math, 188:129–145, 2023) with the aim of reducing the computational cost of the TASE Runge–Kutta methods in Bassenne et al. (J Comput Phys 424:109847, 2021) and Calvo et al. (J Comp Phys 436:110316, 2021). In this paper, we study the application of the AMF approach in combination with TASE W-methods. While for AMF W-methods the temporal order of consistency is immediately obtained from that of the underlying W-method, this property needs a more thorough analysis for the newly introduced AMF-TASE W-methods. For these latter methods it is described which are the additional order conditions to be fulfilled and it is shown that the parallel structure of the methods is crucial to retain the order of consistency of the underlying TASE W-method. Numerical experiments are presented in three spatial dimensions to assess the consistency result and to show that the proposed schemes are competitive with other well-known good performing AMF W-methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.