Abstract

An efficient approximate version of implicit Taylor methods for initial-value problems of systems of ordinary differential equations (ODEs) is introduced. The approach, based on an approximate formulation of Taylor methods, produces a method that requires less evaluations of the function that defines the ODE and its derivatives than the usual version. On the other hand, an efficient numerical solution of the equation that arises from the discretization by means of Newton’s method is introduced for an implicit scheme of any order. Numerical experiments illustrate that the resulting algorithm is simpler to implement and has better performance than its exact counterpart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.