Abstract
We study the fair allocation of undesirable indivisible items, or chores. While the case of desirable indivisible items (or goods) is extensively studied, with many results known for different notions of fairness, less is known about the fair division of chores. We study envy-free allocation of chores and make three contributions. First, we show that determining the existence of an envy-free allocation is NP-complete even in the simple case when agents have binary additive valuations. Second, we provide a polynomial-time algorithm for computing an allocation that satisfies envy-freeness up to one chore (EF1), correcting a claim in the existing literature. A modification of our algorithm can be used to compute an EF1 allocation for doubly monotone instances (where each agent can partition the set of items into objective goods and objective chores). Our third result applies to a mixed resources model consisting of indivisible items and a divisible, undesirable heterogeneous resource (i.e., a bad cake). We show that there always exists an allocation that satisfies envy-freeness for mixed resources (EFM) in this setting, complementing a recent result of Bei et al. [Bei et al., 2021] for indivisible goods and divisible cake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.