Abstract

This work describes two anisotropic optical flow inpainting algorithms. The first one recovers the missing flow values using the Absolutely Minimizing Lipschitz Extension partial differential equation (also called infinity Laplacian equation) and the second one uses the Laplace partial differential equation, both defined on a Riemmanian manifold. The Riemannian manifold is defined by endowing the plane domain with an appropriate metric depending on the reference video frame. A detailed analysis of both approaches is provided and their results are compared on three different applications: flow densification, occlusion inpainting and large hole inpainting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.