Abstract

The Andrews–Curtis conjecture claims that every normally generating [Formula: see text]-tuple of a free group [Formula: see text] of rank [Formula: see text] can be reduced to a basis by means of Nielsen transformations and arbitrary conjugations. Replacing [Formula: see text] by an arbitrary finitely generated group yields natural generalizations whose study may help disprove the original and unsettled conjecture. We prove that every finitely generated soluble group satisfies the generalized Andrews–Curtis conjecture in the sense of Borovik, Lubotzky and Myasnikov. In contrast, we show that some soluble Baumslag–Solitar groups do not satisfy the generalized Andrews–Curtis conjecture in the sense of Burns and Macedońska.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.