Abstract
By judicious exploitation of the transpose operator relation in conjunction with the differential equations of special functions of mathematical physics, integral representations of the on- and off-shell Jost functions are derived from the particular integrals of the inhomogeneous Schrodinger equation. Using the particular integral of the inhomogeneous Schrodinger equation, exact analytical expressions for the Coulomb and Coulomb plus Yamaguchi off-shell Jost solutions are constructed in the maximal reduced form. As a case study, the limiting behaviours and the on-shell discontinuities of the Coulomb plus Yamaguchi Jost solutions are verified numerically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.