Abstract
Let Λ be a domain in C and let fλ(z) = z + a0(λ) + a1(λ)z −1 + ... be meromorphic in D∗ := {z ∈ C : |z| > 1} ∪ {∞}. We assume that fλ(z) is holomorphic in λ ∈ Λ for fixed z. The main theorem states: Let Λ0 be a subdomain of Λ such that fλ is univalent in D∗ for λ ∈ Λ0. If fλ0 has a quasiconformal extension to the closure of D∗ for one λ0 ∈ Λ0 then fλ has a quasiconformal extension for all λ ∈ Λ0. This result is related to a theorem of Mane, Sad and Sullivan (1983) where the assumptions are however different. The main tool of our proof is the Grunsky inequality for univalent functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.