Abstract

In cylindrical continua, hoop stresses are induced due to the circumferential failure. This mainly happens when the cylinder is subjected to mechanical loads which vary in the circumferential directions. On the other hand, radial stress is stress in the direction of or opposite to the central axis of a cylindrical body. In the present study, the influence of curvilinear anisotropy on the radial and tangential stresses of the polar-orthotropic hollow cylinder is presented. The governing equations were derived to evaluate the radial and hoop stresses inside the material. A semi-analytical method through differential transform method (DTM) for the polar-orthotropic hollow cylinder is implemented in the solution. The findings, based on polar-orthotropy, of the effect of the radial and circumferential loads on the radial and hoop stresses of the growing cylinders, show elastic responses that assist in identifying some of the outstanding properties of the curvilinear anisotropic continuums. It is also revealed that the characteristic response of various wall thicknesses of the cylindrical segment is influenced by the fibre orientation, radial and tangential stresses. This work has shown that the curvilinear anisotropy momentously affects the radial and hoop stresses on the polar-orthotropic hollow cylinder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call