Abstract

We deal with a system of partial differential equations describing a steady motion of an incompressible fluid with shear-dependent viscosity and present a new global existence result for $ p>\frac{2d}{d+2} $. Here p is the coercivity parameter of the nonlinear elliptic operator related to the stress tensor and d is the dimension of the space. Lipschitz test functions, a subtle splitting of the level sets of the maximal functions for the velocity gradients, and a decomposition of the pressure are incorporated to obtain almost everywhere convergence of the velocity gradients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.