Abstract

This piece of research addresses an interesting comparative analytical study, which considers two concepts of diverse algorithmic computational intelligent paradigms related tightly with Neural and Non-Neural Systems’ modeling. The first computational paradigm was concerned with practically obtained psycho-learning behavioral results after three animals’ neural modeling. These are namely: Pavlov’s, and Thorndike’s experimental work. In addition, the third model is concerned with optimal solution of reconstruction problem reached by a mouse’s movement inside Figure 8 maze. Conversely, second algorithmic intelligent paradigm was originated from observed activities’ results after Non-Neural bio-inspired clever modeling namely Ant Colony System (ACS). These results were obtained after attaining optimal solution while solving Traveling Sales-man Problem (TSP). Interestingly, the effect of increasing number of agents (either neurons or ants) on learning performance was shown to be similar for both introduced systems. Finally, performances of both intelligent learning paradigms have been shown to be in agreement with learning convergence process searching for least mean square error LMS algorithm. While its application was for training some Artificial Neural Network (ANN) models. Accordingly, adopted ANN modeling is a relevant and realistic tool to investigate observations and analyze performance for both selected computational intelligence (biological behavioral learning) systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.