Abstract

With a view to prove an Ohsawa-Takegoshi type $L^2$ extension theorem with $L^2$ estimates given with respect to the log-canonical (lc) measures, a sequence of measures each supported on lc centres of specific codimension defined via multiplier ideal sheaves, this article is aiming at providing evidence and possible means to prove the $L^2$ estimates on compact K\"ahler manifolds $X$. A holomorphic family of $L^2$ norms on the ambient space $X$ is introduced which is shown to "deform holomorphically" to an $L^2$ norm with respect to an lc-measure. Moreover, the latter norm is shown to be invariant under a certain normalisation which leads to a "non-universal" $L^2$ estimate on compact $X$. Explicit examples on $\mathbb{P}^3$ with detailed computation are presented to verify the expected $L^2$ estimates for extensions from lc centres of various codimensions and to provide hint for the proof of the estimates in general.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.