Abstract

An inverse problem for trapped internal waves is considered in an attempt to provide a practical tool for estimating the density stratification in the sea from the wake pattern behind a moving vessel. The ambient stratification is represented by Barber's (1993) exponential series and the coefficients are found by matching the first mode dispersion relation to the one found from the wake data. A fast algorithm for calculating the dispersion relation is derived. It is shown that when the series converges with a low number of coefficients, the inverse profile is adequate, as happens for example for typical sea loch profiles. In more general circumstances the predicted maximum stratification still provides a reasonable approximation as a result of Barber's (1993) theorem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.