Abstract

This work presents a new approach to the application of the spectral homotopy analysis method (SHAM) in solving non-linear partial differential equations (PDEs). The proposed approach is based on an innovative idea of seeking solutions that obey a rule of solution expression that is defined in terms of bivariate Lagrange interpolation polynomials. The applicability and effectiveness of the expanded SHAM approach are tested on a non-linear PDE that models the problem of unsteady boundary layer flow caused by an impulsively stretching plate. Numerical simulations are conducted to generate results for the important flow properties such as the local skin friction. The accuracy of the present results is validated against existing results from the literature and against results generated using the Keller-box method. The preliminary results from the proposed study indicate that the present method is more accurate and computationally efficient than more traditional methods used for solving PDEs that describe nonsimilar boundary layer flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.