Abstract
A method of converting nonlinear Volterra equations to systems of ordinary differential equations is compared with a standard technique, themethod of moments, for linear Fredholm equations. The method amounts to constructing a Galerkin approximation when the kernel is either finitely decomposable or approximated by a certain Fourier sum. Numerical experiments from recent work by Bownds and Wood serve to compare several standard approximation methods as they apply to smooth kernels. It is shown that, if the original kernel decomposes exactly, then the method produces a numerical solution which is as accurate as the method used to solve the corresponding differential system. If the kernel requires an approximation, the error is greater, but in examples seems to be around 0.5% for a reasonably small number of approximating terms. In any case, the problem of excessive kernel evaluations is circumvented by the conversion to the system of ordinary differential equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.